2,10,30

ZAPISZ SIĘ DO NEWSLETTERA SERWISU AUTOMATYKAONLINE.PL I POBIERZ DARMOWY NUMER "AUTOMATYKI"!

okładka Automatyka

*Wyrażam zgodę na przetwarzanie moich danych osobowych przez Przemysłowy Instytut Automatyki i Pomiarów PIAP, z siedzibą w Warszawie przy ul. Al. Jerozolimskie 202, 02-486 Warszawa, w celach marketingowych, w tym marketingu bezpośredniego. Oświadczam, że zostałem poinformowany/a o prawie do wglądu, modyfikacji oraz usuwania moich danych osobowych.

*Wyrażam zgodę na przesyłanie mi informacji handlowej (w tym informacji handlowej partnerów portalu AutomatykaOnline.pl) za pomocą środków komunikacji elektronicznej w rozumieniu ustawy z dnia 18 lipca 2002 r. o świadczeniu usług drogą elektroniczną (Dz.U. 2002 nr 144, poz. 1204).

*Wyrażam zgodę na używanie przez Przemysłowy Instytut Automatyki i Pomiarów PIAP, z siedzibą w Warszawie przy ul. Al. Jerozolimskie 202, 02-486 Warszawa, telekomunikacyjnych urządzeń końcowych, których jestem użytkownikiem, dla celów marketingu bezpośredniego zgodnie z art. 172 ustawy z dnia 16 lipca 2004 r. Prawo telekomunikacyjne (Dz.U. 2004 nr 171 poz. 1800).

*Akceptuję regulamin portalu AutomatykaOnline.pl oraz politykę prywatności serwisu.




ZAMKNIJ OKNO

Dziękujemy!

Prawie gotowe ... Musimy potwierdzić Twój adres email. Aby zakończyć proces subskrypcji, należy kliknąć link w mailu, który właśnie wysłaliśmy do Ciebie.

Po akceptacji zapisu na newsletter zostanie przesłany do Ciebie numer promocyjny miesięcznika Automatyka.

ZAMKNIJ OKNO

Dziękujemy za próbę ponownego zapisu na nasz newsletter.

Twój mail już jest w naszej bazie!

W przypadku pytań, prosimy o kontakt:
redakcja@automatykaonline.pl

ZAMKNIJ OKNO

This website uses cookies

W celu zapewnienia najwyższej jakości usług strona używa plików cookies. Szczegóły w polityce prywatności serwisu.

POL ENG
a a a
Search
  • Login
  • Sign up
Site map Site map
AutomatykaOnline.pl
  • Home page
  • News
  • Interviews
  • Application
  • Articles
  • Events
  • Companies
  • Products
Search
Automatyka 11/2025

Automation11/2025

In this issue:
  • Interview with Paweł Hoerner de Roithberger and Paweł Reszel, National Instruments
  • Cybersecurity of industrial control systems
  • Signaling columns
  • Magazine
  • Contact
  • Advertisement
  • Home page
  • News

Droga do transmisji bezprzewodowej – który ze standardów jest najlepszy?

Tom McKinney print

Monday September 14 2015
Droga do transmisji bezprzewodowej
Tweet

WiFi, Bluetooth czy Zigbee? Tom McKinney z HMS Industrial Networks charakteryzuje standardy bezprzewodowej transmisji danych na małe odległości, znajdujące zastosowanie w aplikacjach przemysłowych.

W ostatnim czasie szum wokół Industrial IoT przerodził się w ogłuszający ryk. Przewiduje się ekspotencjalny wzrost rynku urządzeń IIoT w najbliższych kilku latach, związany z chęcią rejestracji przez firmy coraz większej ilości danych wykorzystywanych monitorowania i optymalizacji procesów. Wraz z coraz efektywniejszym wykorzystaniem rejestrowanych danych do optymalizacji procesów będzie też wzrastała produktywność. Poza produktywnością wewnętrzną, rejestrowane dane mogą się też przyczynić do lepszej współpracy między firmami, co wiąże się z korzyściami zarówno dla producenta, jak i konsumenta.
Wiele osiągnięć technologicznych złożyło się na możliwość wykorzystania Industrial IIoT na dużą skalę. Osiągnięcia te to między innymi redukcja kosztów gromadzenia danych, redukcja mocy nadajników i większa dostępność sieci. Kolejnym czynnikiem, który przyczynił się do rozwoju Industrial IoT jest standaryzacja transmisji bezprzewodowej.

Transmisja bezprzewodowa to nic nowego

Sieci bezprzewodowe były znane na rynku przemysłowym już ponad 30 lat temu. W przeszłości sieci te pracowały najczęściej na częstotliwościach nie przekraczających 1 GHz. Korzystały z prostych technik modulacji, jak kodowanie z przesunięciem amplitudy (ASK) lub kodowanie z przesunięciem częstotliwości (FSK). Radia obsługujące te rodzaje modulacji mogą być zbudowane z łatwością z elementów dyskretnych. Wadą tego typu rozwiązań jest całkowity brak bezpieczeństwa i mała szybkość transmisji.
W ostatnich 20 latach opracowano kilka standardów zapewniających niezawodną transmisję radiową. Poziom bezpieczeństwa zapewniany przez najnowsze standardy pozwala na ich szerokie zastosowanie. Dodatkowo, w latach 80. uwolniono do dowolnego wykorzystania kilka pasm częstotliwości, w tym 2,4 GHz i 5 GHz. Standaryzowane łącze radiowe jest obecnie tanim i bezpiecznym sposobem monitorowania i sterowania urządzeń w terenie i w fabryce. Biorąc pod uwagę liczbę dostępnych standardów bezprzewodowej transmisji danych warto zadać sobie pytanie, który z nich jest najlepszy do konkretnego zastosowania.
Przyjrzyjmy się trzem najczęściej wykorzystywanym standardom transmisji bezprzewodowej pracującym w paśmie 2,4 GHz: Bluetooth, WiFi i Zigbee.

WiFi

WiFi lub IEEE 802.11a/b/g/n to najbardziej rozpowszechniony standard komunikacji sieciowej TCP/IP do zastosowań konsumenckich i profesjonalnych. WiFi, skrót od Wireless Fidelity jest stosowany do identyfikacji urządzeń Wireless Local Area Network (WLAN). Celem organizacji zarządzającej tym standardem jest stworzenie możliwie najlepszego zamiennika kablowej sieci TCP/IP. Priorytetem jest tu zapewnienie możliwie największego bezpieczeństwa i szybkości transmisji. W rezultacie 802.11n oferuje największą szybkość spośród wszystkich krótkodystansowych standardów transmisji bezprzewodowej. Wadą tego standardu jest duży pobór mocy i duża moc obliczeniowa potrzebna do efektywnego zarządzania stosem protokołów 802.11. Wady te stworzyły lukę na rynku w wyniku czego opracowano kilka standardów adresowanych na rynek urządzeń bezprzewodowych o małym poborze mocy.

Bluetooth

Bluetooth i Zigbee to standardy opracowane na rynki, na których WiFi nie do końca zdaje egzamin. Standard Bluetooth adresuje potrzeby sieci Personal Area Network (PAN). PAN zdefiniowano jak sieć otaczającą użytkownika lub urządzenie. Wymaga się od niej szybkiego kojarzenia urządzeń, prostego interfejsu człowiek-maszyna i małego poboru mocy. W sieci PAN wiele nadajników może być rozmieszczonych w bardzo małej odległości od siebie – Bluetooth oferuje timing zapewniający wzajemne niezakłócanie się nadajników. Przy opracowywaniu tego standardu przyjęto założenie, że musi on zapewnić współistnienie z WiFi, i wprowadzono algorytm frequency hopping zapewniający możliwość przesyłania wiadomości Bluetooth nawet przy wielu aktywnych kanałach WiFi. Ze względu na to, że w standardzie Bluetooth nadajniki pracują z bardzo małą mocą, jest on mniej wrażliwy na propagację wielodrogową w porównaniu z WiFi. Dzięki temu sieci Bluetooth mogą być realizowane bez przeprowadzania specjalnych analiz i planowania. System zapewnia bardzo dużą odporność na szumy i interferencje.

Zigbee

Zigbee bazuje na specyfikacji IEEE 802.15.4 będącej uniwersalnym uniwersalnym standardem radiowym dla urządzeń małej mocy, zapewniającym obsługę wielu protokołów. Umożliwia łączenie wielu sieci czujników o małym poborze mocy pokrywających duży obszar. Charakteryzuje się bardzo małym poborem mocy doskonale trafiającym w zapotrzebowanie tego niszowego rynku. Protokół Zigbee zapewnia krótkie czasy włączania i wyłączania urządzeń pozwalając ograniczyć pobór mocy. Kilka innych protokołów bazuje na standardzie 802.15.4, między innymi ISA100, WirelessHART i 6LoWPAN.

Bluetooth Low Energy

Bluetooth Low Energy (BLE) jest rozszerzeniem standardu Bluetooth. Korzystając z niektórych technik wykorzystywanych w 802.15.4, BLE zapewnia jeszcze mniejszy pobór mocy od Zigbee i obsługuje wiele cech wywodzących się od tego standardu.

Wybór optymalnego standardu

Który z tych standardów jest odpowiedni? To zależy od wymogów konkretnego systemu. Podsumowując, WiFi charakteryzuje się największą szybkością transmisji i najbardziej rozbudowanym stosem protokołu, ale Bluetooth, BLE i Zigbee oferują cechy idealne dla niektórych aplikacji. Na przykład do celów monitorowania czujników zasilanych bateryjnie, rozłożonych na dużym obszarze, Zigbee jest idealnym standardem. Bluetooth/BLE dobrze sprawdza się jako zamiennik technologii komunikacyjnej punkt-punkt, jak również nadaje się do monitorowania czujników rozłożonych na mniejszym obszarze. BLE, znajdujący szerokie zastosowanie w tabletach i smartfonach nadaje się doskonale do realizacji interfejsów człowiek-maszyna.
Bez wątpienia, coraz więcej aplikacji będzie w najbliższym czasie korzystać z łączy bezprzewodowych. Wraz z pojawieniem się Industrial IoT, miliardy urządzeń będą potrzebować łączności z internetem, a wiele z tych połączeń z całą pewnością będzie realizowana bezprzewodowo.

Zalety i wady poszczególnych standardów:
1) WiFi
      a. Zalety
           i. Największa szybkość transmisji sięgająca 600 Mb/s w przypadku 802.11n
           ii. Stałe kanały 25 MHz lub szersze
           iii. Obsługa kanałów 2,4 i 5 GHz
           iv. Rozbudowane funkcje zabezpieczające
      b. Wady
           i. Krótszy zasięg przy większych szybkościach transmisji i nośnej 5 GHz
           ii. Nieadekwatne rozwiązanie dla czujników zasilanych bateryjnie
2) Bluetooth/BLE
      a. Zalety
           i. Bardzo mały pobór mocy
           ii. Szeroki zakres zastosowań
           iii. Bardzo dobre parametry w środowiskach o dużym zagęszczeniu nadajników i dużym poziomie zakłóceń
           iv. Łatwość użytkowania, brak konieczności planowania zakresów częstotliwości i pokrycia terenu
      b. Wady
           i. Szybkość transmisji do 2 Mb/s
           ii. Brak zautomatyzowanego standardu roamingu
3) Zigbee
      a. Zalety
           i. Bardzo mały pobór mocy
           ii. Ustalone kanały pomiędzy kanałami WiFi w paśmie 2,4 GHz
           iii. Obsługa pasm poniżej 1 GHz
      b. Wady
           i. Skomplikowana sieć kratowa
          ii. Maksymalna szybkość transmisji 250 kb/s

O autorze

Tom McKinney, Business Development Manager w HMS Industrial Networks

Tom McKinney (tmc@hms-networks.com) jest dyrektorem oddziału Business Development w HMS Labs w HMS Industrial Networks zajmującym się wprowadzaniem nowych technologii. Tom posiada wieloletnie doświadczenie we wprowadzaniu technik transmisji bezprzewodowej, VoIP i 1394. Jest autorem wielu publikacji dotyczących bezprzewodowych technik transmisji danych.

Więcej informacji dotyczących komunikacji bezprzewodowej w przemyśle można znaleźć pod adresem www.anybus.com.

source: MEPAX

Keywords

Bluetooth, IIoT, Industrial IoT, wifi, ZigBee

Related articles

  • CleanBox Reeco wyróżniony w konkursie „Liderzy Innowacji Pomorza i Kujaw 2025”
  • Efektywność energetyczna przedsiębiorstwa i jej audyt – poradnik ekspertów z Efektywniej.pl
  • Pierwsza orkiestra, w której wykorzystano kamery monitoringu, głośniki oraz sztuczną inteligencję
  • Przygotowywanie kawy z wykorzystaniem cobota Techman TM12 – demonstracja funkcjonalności systemu wizyjnego w wykonaniu firmy „Robotycy”
  • Bezpieczeństwo w centrum dyskusji Kongresu Polska Moc Biznesu

Newsletter

Stay up to date with current information.

Comau videos YouTube

Show more videos
Inżynier wie

Events

Show more events
1 Jan Training

Zwiedzanie centrum efektywnej prefabrykacji szaf sterowniczych

1 January 2025 – 31 December 2025
11 Dec Training

Bezpieczeństwo maszyn - algorytm wyznaczania Poziomu Nienaruszalności Bezpieczeństwa SIL

11–12 December 2025
11 Dec Training

Combo - Dyrektywa maszynowa i nowe rozporządzenie (UE) maszynowe - efektywna ocena zgodności i ocena ryzyka maszyn

Wrocław 11–19 December 2025
11 Dec Training

Część 1 - Dyrektywa maszynowa i nowe rozporządzenie (UE) maszynowe w szczegółach, czyli jak profesjonalnie zorganizować ocenę zgodności i ocenę ryzyka maszyn?

Wrocław 11–12 December 2025
  • facebook
  • Tweeter
  • google+
  • RSS AutomatykaOnline
  • About Us
  • Sales and customer service
  • Privacy Policy
  • Presentation
  • Terms of Use
  • Accessibility Statement
  • Contact Us
  • Contact form
  • Media cooperation
  • Portal Editorial
  • Automatyka Editorial
  • Advertising
  • Advertising contact
  • Advertising in "Automatyka"
  • Newsletter
AutomatykaOnline.pl

© 2014 by Przemysłowy Instytut Automatyki i Pomiarów PIAP. All rights reserved.
created by: TOMP