2,10,30

ZAPISZ SIĘ DO NEWSLETTERA SERWISU AUTOMATYKAONLINE.PL I POBIERZ DARMOWY NUMER "AUTOMATYKI"!

okładka Automatyka

*Wyrażam zgodę na przetwarzanie moich danych osobowych przez Przemysłowy Instytut Automatyki i Pomiarów PIAP, z siedzibą w Warszawie przy ul. Al. Jerozolimskie 202, 02-486 Warszawa, w celach marketingowych, w tym marketingu bezpośredniego. Oświadczam, że zostałem poinformowany/a o prawie do wglądu, modyfikacji oraz usuwania moich danych osobowych.

*Wyrażam zgodę na przesyłanie mi informacji handlowej (w tym informacji handlowej partnerów portalu AutomatykaOnline.pl) za pomocą środków komunikacji elektronicznej w rozumieniu ustawy z dnia 18 lipca 2002 r. o świadczeniu usług drogą elektroniczną (Dz.U. 2002 nr 144, poz. 1204).

*Wyrażam zgodę na używanie przez Przemysłowy Instytut Automatyki i Pomiarów PIAP, z siedzibą w Warszawie przy ul. Al. Jerozolimskie 202, 02-486 Warszawa, telekomunikacyjnych urządzeń końcowych, których jestem użytkownikiem, dla celów marketingu bezpośredniego zgodnie z art. 172 ustawy z dnia 16 lipca 2004 r. Prawo telekomunikacyjne (Dz.U. 2004 nr 171 poz. 1800).

*Akceptuję regulamin portalu AutomatykaOnline.pl oraz politykę prywatności serwisu.




ZAMKNIJ OKNO

Dziękujemy!

Prawie gotowe ... Musimy potwierdzić Twój adres email. Aby zakończyć proces subskrypcji, należy kliknąć link w mailu, który właśnie wysłaliśmy do Ciebie.

Po akceptacji zapisu na newsletter zostanie przesłany do Ciebie numer promocyjny miesięcznika Automatyka.

ZAMKNIJ OKNO

Dziękujemy za próbę ponownego zapisu na nasz newsletter.

Twój mail już jest w naszej bazie!

W przypadku pytań, prosimy o kontakt:
redakcja@automatykaonline.pl

ZAMKNIJ OKNO

This website uses cookies

W celu zapewnienia najwyższej jakości usług strona używa plików cookies. Szczegóły w polityce prywatności serwisu.

POL ENG
a a a
Search
  • Login
  • Sign up
Site map Site map
AutomatykaOnline.pl
  • Home page
  • News
  • Interviews
  • Application
  • Articles
  • Events
  • Companies
  • Products
Search
Automatyka 11/2025

Automation11/2025

In this issue:
  • Interview with Paweł Hoerner de Roithberger and Paweł Reszel, National Instruments
  • Cybersecurity of industrial control systems
  • Signaling columns
  • Magazine
  • Contact
  • Advertisement
Articles
  • Building Automation
  • Safety
  • Druk 3D
  • Electrics
  • Energy
  • Energia
  • Building Automation
  • Communication
  • Computers and HMI
  • Building Automation
  • Assembly and Conveyance
  • Software
  • Pneumatics
  • Measurements
  • Prawo i normy
  • Przemysł 4.0
  • Robotics
  • Control
  • Visions Systems
  • Drives
  • Technika łożyskowa
  • Technologia obróbki
  • Services
  • Building Automation
  • Others
Expand all
  • Home page
  • Articles
  • Pneumatics

Zawory w układach pneumatycznych

dr inż. Piotr Pawełko print

Monday February 24 2014
Schemat blokowy układu pneumatycznego

Schemat blokowy układu pneumatycznego

Tweet

W wielu gałęziach przemysłu, m.in. w górnictwie, budownictwie, kolejnictwie, motoryzacji, farmacji, obróbce skrawaniem, urządzenia pneumatyczne wciąż odgrywają istotną rolę. Obecnie, dzięki powszechności i dostępności urządzeń stanowiących źródła energii pneumatycznej oraz rozwojowi wiedzy w zakresie sterowania tą energią, pneumatyka jest stosowana chętnie i praktycznie w każdej gałęzi przemysłu.

 

Na rynku jest wielu producentów oraz dostawców pneumatyki, zarówno tej prostej, jak i bardzo zaawansowanej. W ofertach handlowych można znaleźć nie tylko elementy składowe układów pneumatycznych, ale także gotowe rozwiązania całych podsystemów. Obecnie inżynier, chcący posłużyć się w projektowanym urządzeniu techniką sprężonego powietrza, nie tyle projektuje podzespół pneumatyczny, co dobiera go spośród znormalizowanych lub dostępnych w asortymencie handlowym. Odnosi się to zarówno do urządzeń wytwarzających sprężone powietrze (sprężarki), elementów magazynowania (zbiorniki), przenoszenia (przewody, złączki) i sterowania (zawory) oraz odbiorników (silniki, siłowniki). Wybrane parametry robocze tych elementów, cechy funkcjonalne, przeznaczenie, zasady eksploatacji są znormalizowane.
Napęd pneumatyczny to z definicji napęd mechanizmów maszyn i urządzeń, realizowany za pomocą energii sprężonego gazu, przy czym zazwyczaj tym gazem jest powietrze. Stosuje się go w maszynach i urządzeniach technologicznych, głównie do realizacji przesuwów mechanizmów oraz wywoływania określonego nacisku statycznego. Napęd pneumatyczny jest realizowany za pomocą siłowników (zazwyczaj o ruchu prostoliniowym) lub silników pneumatycznych (o ruchu wirującym).

Przykładowy zawór odcinający

Różnorodność zastosowań techniki sprężonego powietrza wynika z zalet urządzeń z napędem pneumatycznym. Do istotnych korzyści należy zaliczyć: ogólną dostępność powietrza oraz jego niski koszt; możliwość uzyskiwania dużego zakresu ciśnień (nawet do 300 bar, standardowo 4–12 bar) i natężeń przepływu sprężonego powietrza (nawet ponad 8000 l/min, standardowo 0–1500 l/min); wytwarzanie nadciśnienia lub podciśnienia w układach pneumatycznych; prostą instalację – brak przewodów powrotnych czynnika, odpowietrzenie i odprowadzenie zużytego czynnika z układu następuje do otoczenia; bezpieczeństwo i czystość tego typu napędu; dużą szybkość działania, uzyskiwanie bardzo dużych prędkości ruchu; łatwość kontrolowania i zabezpieczenia układów przed przeciążeniami; łatwość uzyskania ruchu prostoliniowo-zwrotnego; możliwość uzyskiwania szerokiego zakresu generowanych sił i momentów w przetwornikach energii sprężonego powietrza – siłownikach i silnikach.
Naturalną tendencją rozwojową było zaimplementowanie do techniki napędu i sterowania pneumatycznego elektrotechniki (sterowanie elektropneumatyczne), a następnie elektroniki, co umożliwia stosunkowo łatwą budowę układów pneumatycznych programowalnych (PLC lub CNC), a dziedzinę tę nazwano pneumoniką.
Jako podstawowe grupy elementów pneumatycznych układów napędu i sterowania można wymienić:

  • elementy wykonawcze (siłowniki i silniki pneumatyczne),
  • elementy sterujące pracą członów wykonawczych (m.in. zawory rozdzielające, zawory zwrotne, dławiące, reduktory ciśnienia),
  • elementy przetwarzające informację (zawory logiczne rozdzielające, opóźniające, progowe, sekwencyjne, wyspy zaworowe, sterowniki pneumatyczne),
  • elementy wejściowe (przyciski, dźwignie, łączniki drogowe),
  • elementy przygotowania sprężonego powietrza (filtry, reduktory, smarownice, elementy kontrolne, osuszacze),
  • elementy wytwarzania sprężonego powietrza (sprężarki),
  • elementy do magazynowania sprężonego powietrza (zbiorniki),
  • przewody zasilające i sterujące, złącza oraz przyłącza.

Podstawowe grupy elementów pneumatyki przedstawiono na schemacie blokowym układu pneumatycznego. Należy zauważyć, że istnieje naturalne ograniczenie transportowania powietrza przez przewody na odległość do około 1 km, co wynika ze spadku ciśnienia, m.in. na skutek zjawiska tarcia powietrza o ścianki przewodu. Jednak dzięki zjawisku ściśliwości powietrza (około 2000 razy większa niż oleju hydraulicznego) można je łatwo magazynować w zbiornikach. Generowana siła w elementach napędowych przyjmuje wartości do kilkunastu kN, przy stosowanym ciśnieniu powietrza w pneumatyce technicznej nieprzekraczającym wartości 10 bar (1 MPa). Cechą wspólną układów hydraulicznych i pneumatycznych jest proste sterowanie zarówno siłą lub momentem obrotowym – przez regulację ciśnienia (p), jak i prędkością liniową siłowników lub prędkością obrotową silników – przez regulację natężenia przepływu (Q).
Do ustalania wartości ciśnienia stosowane są zawory redukcyjne, do ustawienia przepływu (wydajności objętościowej lub masowej) – zawory dławiące. W zadaniach inżynierskich przyjmuje się, że czynnik roboczy, jakim jest sprężone powietrze, w ustalonych warunkach pracy maszyny jest praktycznie nieczuły na wahania temperatury otoczenia, a zmiany temperatury powietrza są istotne jedynie z punktu widzenia skraplania się pary w powietrzu, czyli „punktu rosy”.
W pneumatyce, do opisu zasad działania poszczególnych elementów, jak i całych układów, stosuje się znormalizowany zapis symboliczny, zawarty w normach PN-ISO 1219-1 1991 oraz PN-ISO 1219-2:1998. Terminologia techniki napędu i sterowania pneumatycznego była usystematyzowana międzynarodową normą ISO 5598 z 1985 r. Jej odpowiednikiem w języku polskim była norma PN-M-73001:1991. Norma ta została wycofana bez zastąpienia, lecz nadal w literaturze pojawiają się definicje powołujące się na to opracowanie.
Dobór elementów układu pneumatycznego musi być poparty obliczeniami w zakresie wymaganych ciśnień oraz przepływów. Wartości ciśnienia w przypadku układów pneumatycznych podawane są najczęściej w barach. Przepływ (strumień powietrza) podawany jest w litrach na minutę. Ważne jest zwrócenie uwagi na warunki odniesienia podawanego przepływu. W praktyce można spotkać się z tzw. warunkami normalnymi. Za takie w Europie uznaję się temperaturę powietrza 0 °C, ciśnienie otoczenia 1 bar i wilgotność względną 0 %. Wówczas przepływ podawany jest w Nl/min, tj. normalny litr na minutę. W przypadku znacząco odmiennych warunków pracy należy dokonać przeliczenia parametrów roboczych. Analizując dane zawarte w katalogach producentów pneumatyki technicznej należy zawsze sprawdzić warunki, dla których podane są parametry techniczne elementów. W materiałach katalogowych producenci podają przeważnie wartość przepływu przy ciśnieniu zasilania 6 bar. Zestawiając układ pneumatyczny pracujący w innych warunkach należy pamiętać o sprawdzeniu i ewentualnej korekcie tych parametrów. Kolejną istotną czynnością w procesie obliczeń i/lub doboru składowych układu jest określenie minimalnej średnicy wewnętrznej przewodów i przyłączy pneumatycznych, którymi ma być doprowadzane i odprowadzane sprężone powietrze, zarówno do, jak i z elementów odbiorczych.

Schemat blokowy układu pneumatycznego

Do określenia odpowiednich przekrojów konieczna jest znajomość maksymalnej rzeczywistej wartości przepływu przez te elementy i dopuszczalne spadki ciśnienia na ich wyjściach. W przypadku przewodów pneumatycznych na ogół przyjmuje się, że straty ciśnienia nie powinny przekraczać 5–10 proc. wartości ciśnienia roboczego w układzie. Zwykle przyjmuje się, że prędkość przepływu sprężonego powietrza przez przewody powinna mieścić się w granicach 10–40 m/s. W celu określenia strat ciśnienia na zaworze należy znać odpowiednie dane charakteryzujące opór przepływu czynnika roboczego przez ten zawór. W tym celu niektórzy producenci zamieszczają w katalogach współczynniki Kv zaworów (tzw. współczynnik wymiarowy zaworu) lub objętościowe natężenia przepływu powietrza przez zawory w określonych warunkach. Najczęściej spotykanym parametrem jest nominalne natężenie przepływu, tj. wartość objętościowego natężenia przepływu Q przy ustalonym ciśnieniu na wlocie zaworu (najczęściej 6 bar) i stracie ciśnienia na zaworze równej Δp = 10 N/cm2 (1 bar). Współczynnik wymiarowy zaworu Kv umożliwia syntetyczne ujęcie oporów przepływu określonych zaworów. Uwzględnia on średnicę nominalną zaworu, kształt kanałów zaworu oraz chropowatość ścianek kanałów przepływowych, a więc wszystkie podstawowe parametry mające wpływ na przepływ czynnika przez zawór. Współczynnik wymiarowy zaworu Kv umożliwia bezpośrednie porównanie teoretycznie identycznych zaworów o tych samych parametrach podstawowych (ciśnienie, natężenie przepływu). Zamieszczanie go nie stało się jednak standardem, toteż nie zawsze jest on umieszczany w materiałach katalogowych.
Pojęcie zaworu pneumatycznego definiuje norma PN-M-73702:1974. Zapraszamy do zapoznania się z dokładniejszym opisem tego szerokiego pojęcia, podziałem zaworów, zasadą działania i zestawieniem parametrów przykładowych zaworów pneumatycznych – wszystko w numerze PAR 2/2014.

Related articles

  • Pierwszy pneumatyczny robot współpracujący
  • Duża elastyczność systemu pick & place dzięki cyfrowej pneumatyce
  • Siłownik DSNU-S. Oszczędność przestrzeni i prosta instalacja
  • Łatwe pozycjonowanie
  • Plug & work z napędami elektrycznymi

Newsletter

Stay up to date with current information.

Comau videos YouTube

Show more videos
Inżynier wie

Events

Show more events
1 Jan Training

Zwiedzanie centrum efektywnej prefabrykacji szaf sterowniczych

1 January 2025 – 31 December 2025
11 Dec Training

Bezpieczeństwo maszyn - algorytm wyznaczania Poziomu Nienaruszalności Bezpieczeństwa SIL

11–12 December 2025
11 Dec Training

Combo - Dyrektywa maszynowa i nowe rozporządzenie (UE) maszynowe - efektywna ocena zgodności i ocena ryzyka maszyn

Wrocław 11–19 December 2025
11 Dec Training

Część 1 - Dyrektywa maszynowa i nowe rozporządzenie (UE) maszynowe w szczegółach, czyli jak profesjonalnie zorganizować ocenę zgodności i ocenę ryzyka maszyn?

Wrocław 11–12 December 2025
  • facebook
  • Tweeter
  • google+
  • RSS AutomatykaOnline
  • About Us
  • Sales and customer service
  • Privacy Policy
  • Presentation
  • Terms of Use
  • Accessibility Statement
  • Contact Us
  • Contact form
  • Media cooperation
  • Portal Editorial
  • Automatyka Editorial
  • Advertising
  • Advertising contact
  • Advertising in "Automatyka"
  • Newsletter
AutomatykaOnline.pl

© 2014 by Przemysłowy Instytut Automatyki i Pomiarów PIAP. All rights reserved.
created by: TOMP