Pięć czynników optymalizacji potencjału architektury IT
Gwałtowny wzrost liczby aplikacji biznesowych sprawił, że olbrzymie ilości generowanych przez nie danych wymuszają tempo zmian na bezprecedensową skalę w centrach danych, które z trudem usiłują je pomieścić. Przedsiębiorstwa coraz bardziej polegają na wirtualizacji, aby wesprzeć własną infrastrukturę IT, co wydaje się kuszącą możliwością, ponieważ środowiska wirtualne są w stanie obsługiwać więcej usług przy wykorzystaniu mniejszej ilości zasobów sprzętowych oraz, co ważniejsze, zapewniać ciągłość świadczenia usług podczas przerw w dostawie zasilania, chroniąc kluczowe obciążenia.
Jednakże każde centrum danych stosujące wirtualizację musi stawić czoła ryzyku związanemu z niewystarczającą wydajnością zasilania czy nawet z występowaniem przerw w dostawie prądu, jeżeli przyjęta strategia zarządzania energią nie sprosta niezwykle surowym wymaganiom związanym z zasilaniem, z którymi wiąże się ta technologia. Kwestia ta ma kluczowe znaczenie dla opłacalności przedsięwzięcia, ponieważ koszty związane z przerwami zasilania mogą sięgać 6000 EUR na godzinę w przypadku małych przedsiębiorstw zatrudniających maksymalnie 100 pracowników, rosnąc do zawrotnej kwoty 1 000 000 EUR na godzinę w przypadku wielkich korporacji zatrudniających ponad 1000 pracowników.
Przyczyną problemu jest to, że maszyny wirtualne pracują z wydajnością 70–80% w porównaniu z 10–15% w przypadku maszyn niezwirtualizowanych; oznacza to, że zapotrzebowanie każdej obudowy na energię może osiągnąć nawet 40 kW. Ponadto wirtualizacja umożliwia szybkie i nieprzewidywalne przełączanie aplikacji pomiędzy serwerami, co pomaga centrom danych równoważyć kluczowe zapotrzebowanie na energię, jak również sprawia, że elastyczność w zakresie zasilania nabiera nowego znaczenia.
Na szczęście istnieją skuteczne rozwiązania. Przyjęcie solidnej, inteligentnej strategii zarządzania energią umożliwia osiągnięcie pełni potencjału nowoczesnej architektury IT przy jednoczesnym unikaniu uszczerbku na reputacji i kosztów finansowych związanych z przerwami w dostawie zasilania. Sprowadza się to do pięciu logicznych czynników: ochrony, dystrybucji, organizacji, zarządzania i konserwacji.
Krok 1: Ochrona
Ochrona obejmuje zasilacze awaryjne zapewniające zasilanie bezprzerwowe (Uninterruptible Power Supply, UPS) w celu uniknięcia utraty danych i zapewnienia ciągłości pracy w przypadku przedłużających się przerw w dostawie energii. Oprócz zapewniania zasilania awaryjnego w czasie przerw w dostawie energii, zasilacze UPS chronią wrażliwy sprzęt IT przed zakłóceniami mocy przy zasilaniu z sieci elektrycznej.
Krok 2: Dystrybucja
Inteligentna dystrybucja zasilania obejmuje kable i inteligentne jednostki dystrybucji zasilania (power distribution units, PDU) do szaf rackowych, które dostarczają informacje na temat prądu na wyjściu i w sekcji zasilania, co umożliwia użytkownikowi szybkie określenie dokładnego miejsca zużycia energii oraz wskazanie nieautoryzowanego sprzętu, który zużywa zbyt dużo energii. Dokładność pomiarów sprawia również, że równoważenie obciążeń staje się prostsze i umożliwia znalezienie miejsc, w których występuje nadmiar mocy.
Informacje zapewniane przez urządzenia odpowiedzialne za dystrybucję zasilania są uzupełniane informacjami pochodzącymi z urządzeń monitorujących środowisko, które prowadzą pomiary wielu zmiennych i aktywują procedury awaryjne i procedury awaryjnego przejmowania funkcji w celu zminimalizowania utraty danych i optymalizacji ich odzyskiwania.
Krok 3: Organizacja sprzętu
Sam sprzęt powinien zostać odpowiednio zorganizowany w bezpiecznej i niezawodnej obudowie mieszczącej infrastrukturę IT, która zapewnia łatwy dostęp podczas konserwacji. W związku z wirtualizacją obciążenia energetyczne i chłodnicze zostają skondensowane na mniejszej powierzchni, co sprawia, że na znaczeniu zyskują bardziej wydajne strategie w zakresie chłodzenia. Recyrkulacja strumieni gorącego i zimnego powietrza staje się coraz powszechniejsza; możliwość zastosowania takiego rozwiązania jest uzależniona od dobrego zarządzania w centrach danych zbudowanych na podłogach technicznych, gdzie uszczelniono wszystkie ewentualne otwory, przez które mogłoby wyciekać powietrze, zapewniając w ten sposób jednolite ciśnienie statyczne i dystrybucję przepływu powietrza pod podłogą. Kluczowe znaczenie dla tych strategii mają szafy rackowe, w których nie dochodzi do wycieków powietrza i wewnętrznego mieszania się ciepłego i zimnego powietrza.
Krok 4: Zarządzanie energią
Odpowiednie oprogramowanie zintegrowane z platformą wirtualizacji zwiększa widoczność i kontrolę w ramach strategii inteligentnego zarządzania energią. Dane o stanie wszystkich zasilaczy UPS i urządzeń PDU w sieci wirtualnej można wyświetlać razem z informacjami dotyczącymi sieci, fizycznego serwera i pamięci masowych na pojedynczej szklanej konsoli. Pomaga to zapewnić ciągłość działalności, ponieważ umożliwia kierownikom podejmowanie świadomych decyzji na podstawie zarówno stanu zasilania, jak i stanu sprzętu IT. Można szybciej reagować, a procedury automatycznego przywracania sprawności systemu po awarii stają się jeszcze skuteczniejsze.
Krok 5: Konserwacja
Istotny element każdej strategii zarządzania energią stanowi również konserwacja zapobiegawcza. Na nowoczesnych zasilaczach UPS można polegać, ale mimo wszystko są to wciąż skomplikowane urządzenia, w których mogą wystąpić usterki, podczas gdy inne elementy wyposażenia, takie jak urządzenia PDU wymagają również nadzoru. Stosowanie właściwego podejścia w kwestii prowadzenia prac serwisowych wszystkich elementów systemu pozwala uniknąć ryzyka.
Sprawność i wydłużenie okresu użytkowania zasilaczy UPS i urządzeń PDU można zapewnić poprzez regularne przeprowadzanie prac serwisowych i monitorowanie. Zakres prac powinien obejmować wizje lokalne, przeprowadzane zarówno w celu realizacji konserwacji zapobiegawczej, jak i w związku z awarią, wymianę zasilaczy UPS i urządzeń PDU, zapewnianie zapasowych części elektronicznych, akumulatorów i komór akumulatorów oraz profesjonalnej infolinii.
Zintegrowanie tych pięciu czynników w spójną i skuteczną strategię zarządzania energią wymaga odpowiedniego sprzętu, oprogramowania i narzędzi serwisowych – elementów, których połączenie gwarantuje solidne i długoterminowe rozwiązanie, niezależnie od osiąganych samodzielnie świetnych wyników. Specjalistyczna wiedza branżowa, wsparcie i gama rozwiązań firmy Eaton pozwala jej oferować te narzędzia i daje możliwość opracowania prawdziwie zoptymalizowanej strategii zarządzania energią, która umożliwia wykorzystanie potencjału architektury IT klienta.
www.eaton.eu/optimizedpower
www.eaton.pl/powerquality
źródło: Eaton
Komentarze
blog comments powered by Disqus